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Dispersion relations for zero-helicity gravitational waves in 
a relativistic expanding medium 
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t Laboratoire de Gravitation et Cosmologie Relativistes and Universidade Federal do 
Espirito Santo, Brazil 
f Laboratoire d’Astrophysique, Observatoire de Paris, 92190 Meudon, France 

Received 9 November 1981, in final form 19 April 1982 

Abstract. In this paper we present a study of evolution of helicity-0 waves (density waves) 
on the FRW cosmological background by using a two-time scale method for solving the 
perturbed field equation. The kinetic description is adopted by means of the collisionless 
Liouville equation self-consistently coupled with Einstein’s equations. The wave packets 
obtained are solutions of the shift type. The effects of the expansion of the background 
(geometrical effects) are contained in these solutions and lead to a power law for the scale 
factor instead of an exponential law in time. The rate of growth is obtained from dispersion 
relations which are studied in the case of a cold gravitational plasma. For large wavenumber 
q the Newtonian dispersion relation is recovered as is the time behaviour of the Newtonian 
solution, and for vanishing q the behaviour of the relativistic hydrodynamics for the 
pressureless case is also recovered. It is found that in a relativistic treatment of the cold 
gravitational plasma, the smaller q becomes the faster the instability grows. 

1. Introduction 

This paper is devoted to the theory of zero-helicity waves in a general relativistic 
massive-particle medium. The asymptotic expansion method used to solve the 
equation describing the problem under study is the so-called two-time scale method. 

In a previous paper (Asseo et a1 1976) (to be referred to as paper I) it has been 
shown that the helicity representation (*2, *l, 0) of waves in a relativistic gravitational 
plasma arises naturally (indeed it is also true in an electromagnetic plasma). Dispersion 
relations for two-helicity waves-also called radiative waves-have been given in 
paper I. The zero-helicity waves we study are associated with so-called ‘density waves’. 
It is clear that the knowledge of the growth of density waves in a Friedman-Robertson- 
Walker (FRW) Universe background is essential to the understanding of the presently 
observed inhomogeneous behaviour of the universe. This is connected with the still 
unsolved problem of the formation of galaxies, or clusters of galaxies. See for instance 
the review paper by Jones (1976). 

This paper belongs, as paper I, to the large ensemble of works devoted to the 
theory of perturbations of cosmological models initiated by the paper of Lifshitz 
(1946) and the principal results are given in standard texts such as those of Weinberg 
(1972) and Peebles (1980). 
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However, in spite of the large number of papers in the field, this domain of study 
is far from closed. For instance Press and Vishniac (1980) and Bardeen (1980) have 
recently studied very large perturbations and some technical aspects such as ‘gauge 
conditions’. The growth of peculiar inhomogeneities (black holes) has been considered 
by Carter (1979). This paper represents an effort to enlarge the understanding of 
these areas. 

The majority of works of this kind are based on a hydrodynamic description of 
matter, although the use of kinetic theory has been so powerful in plasma theory. 
The first part of paper I was devoted to the study of the kinetic theory of a relativistic 
gravitational plasma (general formulation and two-helicity waves). Therefore, it is 
necessary to derive the zero-helicity dispersion relations, as well as to study waves 
with helicity one. A Vlasov system of equations is obtained from a BBGKY hierarchy 
neglecting all correlations. Haggerty and Severne (1976) have studied the stability of 
this equation and analysed the growth of instabilities in gravitational plasma. 

Note that a comparison between a kinetic and a hydrodynamic description of 
waves is important. 

We cannot disconnect the description of the problem at hand from the method of 
solution which we adopt. It should be emphasised that the two-time scale method is 
particularly well adapted to physical situations in which cosmic time plays some special 
role and it is an efficient tool to classify almost automatically the different approxima- 
tions at each order. The existence of an expanding background gives rise to dispersion 
effects on the waves we are studying; however, the use of a two-time scale approximation 
allows for the separation of the expansion from dispersion effects. Therefore, we have 
solved equations for the four zero-helicity components up to the third order of 
approximations (i.e. terms such as S,  S’ are neglected). 

From the set of basic equations, the application of the two-time scale method (§  3) 
leads to two hierarchies of equations which we analyse by means of a Fourier transform. 
In appendix 2 the gauge conditions we have chosen are explained. Each function 
has been expanded in a series of functions of order zero, one, two and so on. As 
shown in paper I, gravitational waves of order zero and of order one, apart from 
those of helicity two, vanish. Therefore, we relabelled our notation: the zeroth order 
in this paper corresponds to the order two in paper I. 

Solutions are available (8  4) under conditions which consist of a matter dispersion 
relation modified by a geometrical dispersion relation. We study how the solution 
obtained evolves in time. To do that we need to make an analysis of the dispersion 
relation. 

2. The basic equations 

Liouville’s equation coupled self-consistently to Einstein equations in the Vlasov 
approximation is the tool that we choose to study the propagation of waves in a 
massive medium, 
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where R,, is the Ricci tensor, &, is the metric tensor, x = 8nG/cZ the Einstein 
gravitational constant, r& the Christoffel symbol and X(xA, U*) the one-particle 
distribution function. The background medium is supposed to be homogeneous and 
isotropic in a sufficiently large region. 

2.1. The metric tensor gWv 
The metric tensor &,, is split into two parts: 

&, = g,, + h,,. (3) 
g,, is the background metric tensor. Instead of using the Robertson-Walker metric 
(making c = 1 and k = 0) 

(4) 

dt’ = S ( t )  dt. ( 5 )  

ds2 = dt’2 - S2(t’)&j dx‘ dx’ 

as the background metric we shall make a change of time variable as 

This will facilitate the subsequent calculations in view of the application of the two-time 
scale method as will be shown in 0 3.1. Our background metric will be 

g,u = S2(t)v,u (6) 
where T,, = (1, -Sii). 

The only non-vanishing connection components for the background are 

r:, = r;= (S/S)S, r44 = S/s (7) 

R i j k m  = S 2 ( $ k 6 j m  - 8 j k 8 i m )  

which gives the following components of the curvature tensor 

R4i4j = -(SS - S2)Sij (8) 
and the Ricci tensor 

where Sij is the Kronecker tensor. 

only in the zero-helicity components (see table 1) 
In the helicity representation of the perturbed metric tensor hp,, we are interested 

Table 1. Variables H (  , ) characterised by a definite spin and helicity, given as a function 
of the components h,, of the weak gravitational field. 

2 1 0 

2 H * . ( 2 , 2 )  = h 2 -  h33)fihZ3 H * ( 2 ,  1) = h12fih13 H(2,O)  = h l l -  1 /3h l l  =f 
1 Hf(1,1)= h 4 ~ f . i h ~ ~  H(l,O)= h41 = g  
0 HT(O, 0) = h44 = h 

HS(O, 0) = hll= H 
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and 
h = h44 H=hll+h22+h33 'spin' 0. (106)  

Therefore, we are only concerned with the following components: h44, h41, hll 
and h2' = h33 which are equal by symmetry. Note that we have in fact chosen x 1  = x 
as the direction of propagation of the waves of perturbations. 

The perturbed connection is reduced to 

(a superscript dot means a time derivative and ai = a / a x i ) .  The only components of 
the de Rham-Lichnerowicz operator are 

s s .  
S 

s S' s 
s " 2 )  s A h 4 4 = 7  [Oh44+(4 s- lo? h44+4 -Sm"a,hn4-2 - h44+ 

S ' [  s S ( s  s 

S ' [  s S 

1 
S 

s .  s 

s s 
Ahi4 = 7 Ohi4 - 2 - hi4 + 2 - S "'dmhni + 4 - - 8 7) hi4 + 2 g &h44] 

Ahjj =7 Ohj j -2 -~ i j+2- (a ih4 j+a jh j4 )  

s2 h44Sij - 2 3: S mnhmn8ij -t 4 
S 

where 

2.2. The Vlasov system 

The Vlasov system of coupled equations for the background is 

(13)  1 R,, = x (T,' - sgWuT) 

UWa,N(xA, UA)-r;cupU""aN(XA,  u A ) / a u "  = o  (14)  

N ( x A ,  U") is the one-particle distribution function for the background and TWY is 
the energy-momentum tensor. We have the energy density 

p = T44 
and 

- p = T 1 1 = T 2  2 - - T33 

is the pressure for an isotropic distribution function. 
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The linearisation of the Vlasov system, equations ( l ) ,  (2), for the perturbation has 
been given by Droz-Vincent and Hakim (1968) (see also paper I). In our case it can 
be written 

(Sh )," Ah,,, - h,S: - g,vhaBSap + 2(h,,S; + hvaS:) + A,, = Z,, (18) 

(19) a u  au  

where A,, = V,I, +VJ,, I, = V,(hL -$SE&), V is the covariant derivative with respect 
to the metric of the background and 

uaa,z(xA, uA)-r;u:,u p U c y(xA,  az P U U* (xA, u A )  

= gaPhaB. We have 

1 S' 
(LZh)44 =? [ O h 4 4 - 2 S m n i ) m h n 4 + h 4 4 + S m n h m n  +-(-&4+ 10S""amh,~-36""hm,) 

S 

1 
S 

(Sh)ij =- [Ohij -S""aiam(hnj +~Snih44-$sn16rShrs) 

-Smnajam(hni +$Snih44-&3,iSrShrs) +aih4j +ajhi4 
+2(s/S)[2aih4j +2aihi4-hij +(Sm"a,h,4-$h44-$ 1 rs hrsMij1 * 

s 
-Smnam(hin + ~ S n i ~ 4 4 - ~ S i n S r S h ' , s ) + ~ i 4 + 2  - (3aih44 

S 

-2hi4+3Smnamhin-Smnaihm,)+ 4 - - 1 4 7  hi4 I ( s  s S') s 1 
The right-hand side of equation (1 8) is given by 

where Z(xA,  U ') is the perturbed distribution function. 
The analysis of stability against perturbations of zero-helicity modes is nothing 

but the solutions of the system of equations (lS),  (19). Clearly, the field and matter 
of the background system appear in it. They are related by equations (13), (14) and 
(15). This system is solved elsewhere (Hakim 1968, Bel 1969) and it is well known 
that there are no stationary solutions (other than trivial or exotic ones). Thus, 
approximation methods are necessary to solve the system (18) and (19). These methods 
generally lead to some splitting between the background field and background matter. 
However, from the foundations of general relativity theory, matter and field are 
intimately related. Therefore in obtaining the solutions, it is insufficient to take into 



3356 J P Baptista and D Gerbal 

account only the matter or only the field. The correct approach would treat matter 
and field on the same footing. 

3. Splitting of geometry against matter interaction effects 

To solve equations (18) and (19) we want to make an approximation such that matter 
and geometry would be, step by step, disconnected. The time scale which characterises 
evolution of the background, and consequently the evolution of the scale factor S(t) ,  
is the Hubble time scale 

(22) 

However, we study wave phenomena, particularly instability phenomena, in which 
matter is dominant. Thus another scale of time related to these waves arises: Ti the 
time scale of the order of a few periods of oscillations, or, more precisely, the duration 
of validity of the linear theory. Because, as we shall see in § §  5 and 6, this theory 
cannot account for large densities which occur in configurations such as stars, galaxies 
or clusters of galaxies, etc which implies the existence of nonlinear phenomena, then 
TI is smaller than the age of the Universe. Therefore, 

TH = ( S / S ) - ’  = (3 /~p ) ” * .  

Ti = ETH E << 1; (23) 

this feature gives rise to the two-time scale approximation. 

3.1. Asymptotic expansion 

Applied to phenomena evolving in an FRW background, the asymptotic procedure, 
now well known (Cole 1968, Nayfeh 1973, see also paper I), needs several steps 
described as follows. 

(1) A change of time as appears in equation ( 5 ) .  The reason (explained in § 3 
paper I, or in Cole 1968, p 102) actually is a non-mixing between the two time scales. 

(2) The use of the fundamental ansatz given by 
d a  a 
z=z+Ear 
x ( ~ ) = x ( T ,  T ) = x ( o ) ( ~ ,  T ) + & x ( I ) ( ~ ,  T ) + E ~ x ~ ( T ,  T )+O(e2)  (25) 

where T and T are the ‘times’ measured respectively in units of TI and TH,  and X ( t )  
is any function which appears in our equations. 

(3) After resolution of the two hierarchical systems of equations which arise (short 
time scale and large time scale systems), we rewrite the functions as functions of 
cosmological times. Note that the method-up to first order-is equivalent to a WKB 
method, but it allows a quite automatic classification of quantities inferred at each 
order. 

The equations (18), (19), after the asymptotic expansion give rise to two systems. 
System 1 ’ ~ h ( r ) & v  + o ( E ~ )  = x c r ) & v +  o(&*) S 2  

U U a u z , , ) ( x A ,  U A )  - X&3UUU@ 

(26) 
( x  *, U A )  + O(E 2 ,  = 0 au 
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where a is the d’Alembertian operator ( r  = 0 , l )  

and 

and the h,, reduce to the components given in 0 2 G: above is the Einstein gravitational 
constant and must not be confused with X ( t )  of (25 )  nor with x$, the perturbation 
of the Christoffel symbols). Note that at zero and first order matter equations (system 
1 above) are similar, therefore the subscript is unnecessary. 
System 2 

+? ( 2  %?? (9, x ,  T ) + 4  (9, x, T ) )  = 0 s a s  ax 

with the gauge conditions 

3.2. The Fourier analysis 

When using the two-time scale method we have hypothesised that functions under 
consideration are functions of two independent times. However, some functions such 
as the cosmological scale factor S(F, T) = S(T) are only large-scale time dependent. 
Therefore they are constant functions in the short time scale. The Robertson-Walker 
metric is then a Minkowskian one. This is the reason why system 1 is easily written 
in a compact form; for example the d’Alembertian used in equation (26), but where 
the fourth coordinate is related to T, i.e. a4=a/a.T. In view of solving systems 1 and 
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2,  we define the Fourier transform of a function ~ ( x " ,  T )  as 

x ( x ' ,  T )  = X ( k P ,  T )  exp(ik,x') d4k (30) 

with xw = (F, xi),  k,  = (U, q )  and k,x' = wT+qx.  Note that ~ ( x " ,  T )  is also a function 
of T. 

J 

3.2.1. System 1, after the use of (24) ,  becomes 

p;,(kA, T)=k,hZ(kA,  T)+k,h,"(k", T)-k"h,,(k", T ) .  

9:; h,,(kA, T )  = 0 

(33) 

The treatment of this type of equation is well known (see paper I), and leads to the form 

(34) 
with 
9:; k 2 S ~ 6 p " ' + ~ [ 2 T h P S p " ) + 2 T ~ S , " )  -(kuIgu +k,I:")+2Tu,gP" 

-(kPI,"p + k"I&)+ k*J:; - g u p ( T g p u -  k ' P I " ' + ~ k 2 J p u ) ]  (35) 
where (pa) means symmetrisation in this index and k 2  E guPkukp. Two types of integral 
functions appear naturally 

U"U@U, - d 3 ~  
N(x', U ", T )  ~ J-g - 

kAUA U 4  
I,"'..' = 

UP... - U u~ 'u,u, - d 3 ~  
(kAUA)2 J-g-  U 4  

J,,... =I N(x', U", T )  (37) 

where I,"'". has an odd number of indices while J$;;: has an even number. Symmetries 
of these functions are explained in appendix 1, 

3.2.2. The same Fourier transform (30j is applied to the system 2 (equation (25) ) ,  
but in this case the dependence F and x (i.e. w or q )  is assumed to be known (from 
the system 1). Then the set of equations can be written as 
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4. Solutions 

The following procedure is adopted in view of obtaining the general solution. 
(i) We solve first the short-scale time equations (26)  (matter equations). The 

matter dispersion relations are derived from this solution. 
(ii) We solve the large-scale time equations (38) (geometrical equations) in the 

next step. 
As usual, at first order, amplitude modifications appear which represent the 

large-scale time evolution. We strongly emphasise that the geometrical equations 
have been solved but only gauge-compatible solutions are retained. 

4.1. Matter dispersion relation-eold case 

The matrix given by (35)  is generally very complicated even in the cold case. The 
integrals I;’ and J r f  are written in this case 

The non-vanishing integrals are listed in appendix 1 .  no is the density number and 
m is the mass of the particles of the gravitational gas. 

Then, in helicity notation, system 1 is represented by the matrix system 

The plasma frequency up = $ynomS2 = 4.rrGnomS2 is chosen to be unity. The solutions 
are of the form 

xj(Y, X, T) = xj(w9 4% T) expCi(wY++x)IS(%) dw dq (42)  I 
where S is Dirac’s distribution, and 

(43)  2 2  d e t % = w  - q  = O  
2 2 6  det 9 2  = w 8  - 3(q2 - 1)w6 + (3q4 - 7q2-28)w4 - (q6 - 5q4 -28q +96)w - q  = 0 

(44)  

are the two dispersion relations; x j ( Y , x x ,  T) being any of the four components. 
However, note that f waves decouple from the others. 

4.2. Geometrical equations 

Solutions of equation (38) are not very difficult to find. However, the compatibility 
of these solutions with the gauge conditions is not so easy, and tedious calculations 
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are necessary. We want to point out that solutions can be obtained but only when 
the matter dispersion relations (43) and (44) are taken into account. 

The solutions depend on two (and only two) constants. Thus we have, 

Hto)(w, 4, T )  = C2(w9 +%‘i(w, 4 )  

g(o)(w, 4, T) = (w /q ) (C2(0 ,  4>s-3 /2(T)  +acicw,  4) )  

h(O)(W,  4, T )  = C2(w, 4 ) s - 3 / 2 ( T )  -iC1(w, 4 )  
(45) 

f (o)(w,  4, T) = &(w, 4 ) s - 3 / 2 ( T )  +$Ci(w,  4). 

4.3. General solutions 

We obtain the general solutions following the usual procedure of the two-time scale 
method, adding each order of solutions. After reconstituting the initial time, by using 
equation (24), the solutions are, as they should be, wave packets. We obtain two 
‘modes‘. 

Mode I 

h(t ,  x)  = -2 4C&) exp(iqx) exp i w(4, t) dt d4 J ( I  1 

Mode II 

H(t ,  x )  = 6K3I2(t) 1 @I&) exp(iqx) exp( i w(4,  t) dr) d4 

g(t ,  x)  = 6S-3/2(t) J’ W C I I ( 4 )  exp(iqx) exp( i w(4,  t )  dr) d4 

h ( t ,  x)  = 6S-3/2(t) 5 q c I I ( q )  exp(iqx) exp( i J’ w (4, t) dt) d4 

f ( t ,  x )  = 4S-3/2(t) 5 4cII(q) exp[i(qx + w ’ t ) ]  dq 

U ’ ,  w are the zeros of the dispersion relation (43), (44). 

5. Analysis of the time dependence of the solutions 

An easy way to understand the time dependence of the solutions we have obtained 
is to look at the behaviour of the density contrast 

A = S p / p  = K: /T: .  (48) 
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From (19), we obtain 

I, I1 characterising the two modes. y ( q ,  t) is the imaginary part of w ( q ,  t)  arising from 
the dispersion relations (43), (44). Note that in (19), it is the cosmic time coming 
from the FRW cosmology that we used. 

Clearly, the time dependence occurs from the variation of the amplitude of the 
wave packets (which comes from the geometrical influence of the background) and 
from the instantaneous phase y(q, t) (which characterises matter effects). It is now 
useful to re-introduce the dimensional phase 

A49 t )  = Y ( d W p ( f ) .  ( 5  1) 

The gravitational plasma frequency wp is related to the Hubble ‘constant’ via the 
Einstein equations for the background wp(f) = J$S/S. Then the density contrast 
becomes 

AI cc S-’(t)SY(4)Jf ( t )  (52)  

AII CC S-’/’( t ) s  y(4)J$ ( t  ) ; (53) 

this emphasises strongly but simply how the mathematical characterisation of an 
expanding background (S function of time) as compared with a static background (S 
constant) gives a power law for the scale factor. 

The rate y ( q ) a -  1 of amplification for the less ‘evanescent’ mode depends 
on the wavenumber 4, but only through y ( 4 ) .  Therefore, some comments on the 
dispersion relations are in order. 

There are two dispersion relations; the first one, equation (43), is related to the f 
waves which are disconnected from other components. The second dispersion relation, 
equation (44), is devoted to the other components. 

It should be noted that the f waves are not affected by any dispersive or damping 
effects. The case of relation (44) is obviously less simple. It is an equation of eighth 
degree leading to eight roots. We may question the different behaviour of our general 
relativistic case (giving eight modes) compared with the Newtonian case which gives 
rise to only one mode (Jean’s mode). Jean’s dispersion relation is obtained as a 
Newtonian limit of our general relativistic matter dispersion relation (43). The 
Newtonian approximation of the general theory of relativity may be made by making 
two simultaneous and necessary assumptions: (i) small-velocities condition, (ii) physical 
system not too large; i.e., respectively w << 1 and 4 >> 1. Then (43) reduces to w 2 +  1 = 0. 
The eight roots of (43) are distributed as follows. 

Mode a, defined by w = *wl (q ) ;  there are no damping or amplification effects. 
Mode b, defined by w = *w2(4)  f iy2(4), ingoing and outgoing waves with damping 

Mode c, defined by w = *iy3(4): only damping or amplification effects. 
The behaviour of these modes is described in figure 1 in which the w curves are 

given, and in figure 2 in which the rates yz and y 3  of instabilities are given. 

or amplification. 
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Figure 1. Real part of roots of dispersion relations 
w is in units of ( 4 7 ~ G m n ~ ) ’ ’ ~ .  q is in units of w / c .  

Figure 2. Imaginary part of the roots of dispersion 
relations. Same units as in figure 1. The full straight 
line located at y ( q )  = 1 is the ‘Newtonian cold’ rate 
of growth. The broken straight line located at 
y ( q )  - 2.10 is the hydrodynamics rate of growth. 

For q 5 1.5,  y2 has two branches which meet giving a unique y2. Note that w 2  
vanishes for q 6 1.5 .  y2 is generally very small (even smaller than y3 )  and tends 
asymptotically to 0.05. 

Waves described by mode c are not progressive waves. Then they give rise to an 
absolute instability. Therefore following Bers and Briggs (1976) other modes should 
be without any real physical significance. Thus the value of aw2/aq, which is often 
greater than 1 (=c in our units), is also without physical significance. The term y 3  is 
larger and tends asymptotically to 1, for large wavenumbers. We emphasise that 
y3 + 1 is the Newtonian Jean ‘dispersion’ curves for a cold gravitational plasma. It is 
the graphic translation of the Newtonian limit of our relativistic relation of dispersion 
as explained before. 

In contrast to the Newtonian Jean dispersion relation, which in the cold case is 
independent of q, the relativistic one depends essentially on q. We can easily suppose 
how our y 3  curve will be modified when a small temperature would be taken into 
account: knowing that the Newtonian behaviour is recovered for large 4. On the 
other hand, the Newtonian y curve vanishes for the wavenumbers q where q 2 qJ (4, 
is the Jean wavenumber) and then the pressure effect will counterbalance the gravita- 
tional effect. Then it is reasonable to suppose that the pressure effects when they are 
sufficiently important would act in such a way that the y 3  curves would grow more 
slowly than they would in the cold case, for q + 0. 

6 .  Conclusion 

This paper is devoted to the study of the zero-helicity waves (density waves) on the 
FRW background. To solve the Einstein-Liouville systems of equations describing the 
collisionless gravitational plasma we have used the two-time scale expansion method. 

This method appears to be, in the relativistic case (paper I and herein) as with the 
Newtonian case (Baptista and Gerbal 1980), structurally well adapted for separating 
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phenomena governed by different time scales. Technically speaking, it allows for a 
very simple treatment of the dispersion relation because quantities involved depending 
only on the large scale time are treated as constant in the first step. After returning 
to the cosmological time, these quantities are automatically time functions in the phase 
of a wm-type exponential. 

We obtain a dispersion relation which takes into account matter effects and 
as weli geometrical effects due to the interaction of the waves with the matter and 
with the non-flat and non-stationary background; The matter part of the dispersion 
relation is dependent upon the wavenumber q (figures 1 and 2). This is not true 
for the geometrical part (at least to the order for which we solve our equations). 
Therefore, the study of the instability for the collisionless case shows that the rate 
actually depends upon q, even in the cold case. This is the difference between 
our kinetic relativistic theory and both the Newtonian and the hydrodynamics 
treatments. For the latter two treatments in the cold case the Jean instability 
does not depend on q. Note that here y 3 ( q )  tends to about 2.12 for small q, 
i.e. the hydrodynamics result is recovered (as it must be) in the hydrodynamic 
limit! However, although this is satisfactory for the coherence of our work, 
this limiting value is obtained out of the domain of validity of the two-time scale 
method, i.e. for lengths of the orders of the particle horizon. 

The way in which the exponential instability, characterising a static plasma, is 
transformed into a power law of the scale factor S ( t )  in the non-stationary FRW 
background appears clearly (note that the power law for time is a consequence of the 
power time dependence for the scale factor). 

The rate of growth of instability that we have computed recovers the Newtonian 
rate for large 4. We have found solutions of our equations up to order three (although 
relabelled as order 1 in this paper) because geometrical effects appear there. Matter 
effects have been obtained to orders two and three. The next orders would give 
phase-shifted modifications, but unfortunately the Lorentz-like gauge condition is no 
longer practical after third order. It would be necessary to find another gauge 
condition. Nevertheless, it is the Lorentz-like gauge which ensures the classification 
of the field hcrB following helicity. Therefore calculations at higher orders for the 
asymptotic expansion seem to us to be very difficult and with few improvements added 
to the present value calculated because it appears clearly that the main time feature 
of the solutions is obtained up to order three. In our minds an effort must be made 
in another direction: the difference between an exponential growth and a power law 
is probably not so dramatic as is often stated. The duration of the validity of the 
linear ‘regime’ is not very large. During this time the exponential growth on an 
instability is not large compared with the power law growth of an instability. This 
emphasises the absolute necessity of studying the full nonlinear instability, 
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Appendix 1. 

If we take into account that the four-vector k, does not depend on the velocity ua, 
we can readily see that 

k J f  = T i  k J P  = T (Al. l )  

where T is the trace of TaB ; T,’ being the energy-impulsion tensor of the background 
given by equation (15). We also have the following relation 

kJ” =I“ k,kJ;“’ = Ta8. (A1.2) 

Now following our choice of the propagation direction of our perturbation and taking 
into account that N ( x A ,  U,) is an even function of the three-velocity, the symmetry 
properties of the integrals I,”’, J,”’ and J Z  are the same as the products uau’u, and 
U ~ U ~ U ~ U ,  for a and p equal to 2 or 3. In this case, the integrals vanish whenever 
they are odd in the index 2 or 3 (each integration is taken on the interval -CO to +CO). 

For the cold case we put N(xA,  U,) =p(xA))d(ua - E a )  and in this case (36) and 
(37) give (39). The non-vanishing integrals are 

1~=1t4 = p ( x A ) / w  and J44 = Jt: = p ( x A ) / w 2  (A1.3) 

with p ( x ^ )  = mno(xA). 

Appendix 2. 

The complete Einstein tensor (background plus variation) is divergence free. The 
splitting of the metric tensor given by equation (3) leads to the following identity 

v , ) d s ~ ’ + ~ ; ~ ~ “ + ~ ~ ~ u u = o  (A2.1) 

i.e. the perturbed Einstein tensor is not divergence free with respect to the background 
metric. The energy-momentum tensor, constructed from a distribution function which 
is a solution of the Liouville equation, is also divergence free with respect to the total 
metric. The same splitting (equation (3)) leads to 

(A2.2) 

We remark now that the variation of the variation of the connection, ~ $ 3 ,  is 0 ( c 2 )  

V , S S L ” u + O ( ~ 2 ) = V , K ~ ” + O ( ~ 2 ) = 0 .  (A2.3) 

V,KWY + X ; ~ T I + ~  +,yEuTu” 5 0. 

in the asymptotic expansion. Therefore, 

Therefore, the de Donder gauge condition 

I, = V,(hP, -&K) = 0 

used in the paper by Droz-Vincent and Hakim (1968) and used in our paper is only 
compatible with the perturbed Einstein equations for either the zero- and first-order 
approximation or for an empty background. 
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